ERG Deregulation Induces PIM1 Over-Expression and Aneuploidy in Prostate Epithelial Cells
نویسندگان
چکیده
The ERG gene belongs to the ETS family of transcription factors and has been found to be involved in atypical chromosomal rearrangements in several cancers. To gain insight into the oncogenic activity of ERG, we compared the gene expression profile of NIH-3T3 cells stably expressing the coding regions of the three main ERG oncogenic fusions: TMPRSS2/ERG (tERG), EWS/ERG and FUS/ERG. We found that all three ERG fusions significantly up-regulate PIM1 expression in the NIH-3T3 cell line. PIM1 is a serine/threonine kinase frequently over-expressed in cancers of haematological and epithelial origin. We show here that tERG expression induces PIM1 in the non-malignant prostate cell line RWPE-1, strengthening the relation between tERG and PIM1 up-regulation in the initial stages of prostate carcinogenesis. Silencing of tERG reversed PIM1 induction. A significant association between ERG and PIM1 expression in clinical prostate carcinoma specimens was found, suggesting that such a mechanism may be relevant in vivo. Chromatin Immunoprecipitation experiments showed that tERG directly binds to PIM1 promoter in the RWPE-1 prostate cell line, suggesting that tERG could be a direct regulator of PIM1 expression. The up-regulation of PIM1 induced by tERG over-expression significantly modified Cyclin B1 levels and increased the percentage of aneuploid cells in the RWPE-1 cell line after taxane-based treatment. Here we provide the first evidence for an ERG-mediated PIM1 up-regulation in prostate cells in vitro and in vivo, suggesting a direct effect of ERG transcriptional activity in the alteration of genetic stability.
منابع مشابه
The Novel PIM1 Inhibitor NMS-P645 Reverses PIM1-Dependent Effects on TMPRSS2/ERG Positive Prostate Cancer Cells And Shows Anti-Proliferative Activity in Combination with PI3K Inhibition
PIM1 is over-expressed in multiple tumors, including prostate cancer (PCa). PIM1 upregulation is mediated by direct binding of the ERG transcription factor to its promoter. About 50% of PCa cases are characterized by the presence of the TMPRSS2/ERG fusion, leading to ERG over-expression and thus to PIM1 transcriptional activation. PIM kinases are considered as weak oncogenes, but when combined ...
متن کاملGenome-scale expression and transcription factor binding profiles reveal therapeutic targets in transgenic ERG myeloid leukemia.
The ETS transcription factor ERG plays a central role in definitive hematopoiesis, and its overexpression in acute myeloid leukemia (AML) is associated with a stem cell signature and poor prognosis. Yet how ERG causes leukemia is unclear. Here we show that pan-hematopoietic ERG expression induces an early progenitor myeloid leukemia in transgenic mice. Integrated genome-scale analysis of gene e...
متن کاملNDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells
Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...
متن کاملERG deregulation induces IGF-1R expression in prostate cancer cells and affects sensitivity to anti-IGF-1R agents
Identifying patients who may benefit from targeted therapy is an urgent clinical issue in prostate cancer (PCa). We investigated the molecular relationship between TMPRSS2-ERG (T2E) fusion gene and insulin-like growth factor receptor (IGF-1R) to optimize the use of IGF-1R inhibitors.IGF-1R was analyzed in cell lines and in radical prostatectomy specimens in relation to T2E status. ERG binding t...
متن کاملOverexpression of the oncogenic kinase Pim-1 leads to genomic instability.
Aneuploidy and chromosomal aberrations are hallmarks of most human epithelial malignancies. Here we show that overexpression of the oncogenic kinase Pim-1 in human prostate epithelial cells induces genomic instability by subverting the mitotic spindle checkpoint. Cells overexpressing Pim-1 have a defect in the mitotic spindle checkpoint, abnormal mitotic spindles, centrosome amplification, and ...
متن کامل